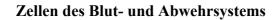
Blut- und Abwehrsystem

- Allgemeines -

Suspension ("grobdisperse" Aufschwemmung) aus Zellen in Plasma = Serum + Fibrinogen/Prothrombin (molekular disperse, kolloidale Lösung)

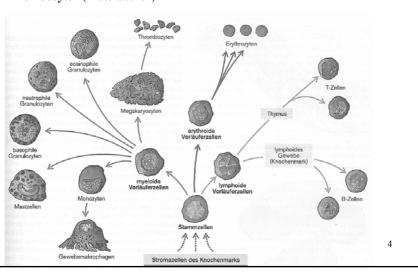
pro/l Blut: 900-910 g H2O, 65-80 g Eiweiß, 20 g niedermolekulare Substanzen **Blut-Gesamtmenge** ca. **8% des Körpergewichts** > **5,6 l** bei 70 kg schwerem Mann

allgemeine Aufgaben


- Transportfunktion
 - Atemgase
 - Nährstoffe
 - Metabolite
 - Wirkstoffe
 - Wärme
- Milieuerhaltung
 - Homöostase gelöster Stoffe
 - pH
 - Temperatur
- · Schutz vor Blutverlust
 - Blutgerinnung
- · Abwehrfunktion

Blutplasma

- 70 g Eiweiß pro l Blut bestimmen KOD_{Blut} = 3,3 kPa
 - davon Albumin (40 g/l) zu 80% ⇒ Molekulargewicht relativ klein gegenüber anderen Plasmaproteinen
- $KOD_{Interstitium} = 0.75 \text{ mPa}$
 - Verlust von Plasmaeiweiß (Albumin < 15-20 g/l)
 ⇒ Ödembildung (H₂O-Verschiebung in das Interstitium, da keine EW-Permeabiltät)
- KOD_{Zelle} = 13 kPa
 - \Rightarrow kompensiert durch geringere osmotische intrazelluläre Konzentration bei selektiver Permeabilität für $\rm H_2O$
- osmotischer Druck = 770 kPa
 - ⇒ zu 96% bestimmt durch Plasmaelektrolyte (sehr hohe Na+Konzentration)
- Konzentration osmotisch wirksamer Teilchen (osmol/l) \Rightarrow 0,3 osmol/l = isoton
 - hypoton isoton hyperton
- osmotische Wirkung nur bei selektiver H₂O-Permeabiltät, also kaum in den Blutkapillaren

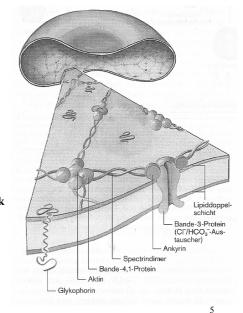

2

unktionen:	Protein	Konzentration (g/l)	Ausgewählte Funktionen
	im Serum		
Nährfunktion Vehikeltransport	Albumin	35-40	 kolloidosmotischer Druck Transport von Ca²⁺, Fettsäuren u. a. lipophilen
			Substanzen
unspezifische Träger- funktion (Ca ²⁺)	α ₁ -Globuline	1,3-4	 Transport von Lipiden, Thyroxin und Neben- nierenrindenhormonen Inhibitor für Trypsin und Chymotrypsin
KOD Puffer-Funktion	α_2 -Globuline	4-9	 Oxidasefunktion, Plasmainhibitor Bindung von freiem Hämoglobin
spezifische Abwehr	β-Globuline	6-11	Transport von Lipiden und EisenKomplementproteine
	γ-Globuline	7 – 15	 Mehrzahl der zirkulieren- den Antikörper
Blutgerinnung	im Plasma		
	Fibrinogen	2-4,5	 Blutgerinnung (Vorstufe von Fibrin)
	Prothrombin	0,13 – 0,15	 Blutgerinnung (Vorstufe von Thrombin)

aus einer Knochenmarksstammzelle entstehen

- Erythrozyten (rote Blutkörperchen)
- Leukocyten (weiße Blutkörperchen)
- Thrombocyten (Blutblättchen)

Erythrocyt

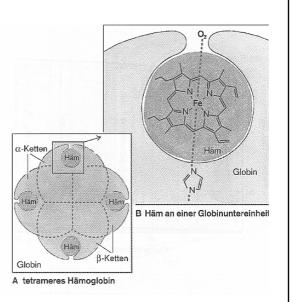

Mann:

5,1 Mill.Erythrozyten / µl 1 Blut Hämatokrit 47 Vol% Hb \Rightarrow 16 g%

Frau:

4,6 Mill.Erythrozyten / µl l Blut Hämatokrit \Rightarrow Hk = 42 Vol% Hb \Rightarrow 14 g%

- Hk: zellulärer Volumenanteil im Blut bestimmt durch den weitaus überwiegende Erythrocytenvolumenanteil in Vol%
- **Erythropoese: rotes Knochenmark**
 - niedriger PO₂ der Niere ⇒ Erythropoetin
 - Zus. Stimulation durch ⇒ Androgene, Östrogen
- Lebensdauer: 100 120 Tage Abbau in: RES, Milz, Leber
- kein Zellkern!



6

Erythrocyt

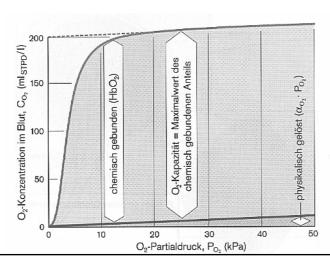
Größe und Form:

- rund, bikonkay
- Durchmesser: $7.5 \mu m$
- Oberfläche: $140 \mu m^2$
- elastisch verformbar wegen der Struktur des Zytoskeletts
- Hauptmasse
 - \Rightarrow Hämoglobin Molgewicht 67000
 - 2α- und 2β-Globin-Ketten
 - 4 Häm-Gruppen mit je 1 zentralen Fe²⁺

Erythrocyt und Atemgastransport

- chemische Bindung von O₂ an das zentrale Fe²⁺:
 keine Oxidation sondern koordinative Bindung (Oxygenation)
 - Voraussetzung
 ⇒ je 1 freies Elektronenpaar und 1 Elektronenlücke der Reaktionspartner
 Hb + O₂ ⇒ Hb-O₂
- · Affinitätszunahme
 - mit der Zahl der besetzten Hämgruppen
- Affinitätsabnahme durch:
 - Oxidation: Fe²⁺- e⁻ ⇒ Fe³⁺
 Methhämoglobin (spontan 0,5 %) oder
 durch Gifte (Kaliumferricyanid)
 - kompetetive Hemmung:
 CO mit 300x stärkerer Affinität zum Fe²⁺
- Hb-O₂ ⇒ Oxyhämoglobin: hellrote Farbe
- Hb ⇒ Hämoglobin dunkelrote Farbe

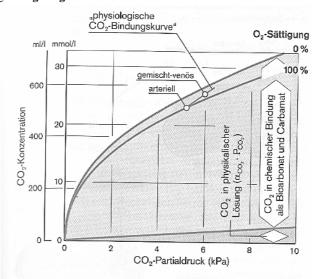
7


Erythrocyt und Atemgastransport

Voraussetzung

 Atemgastransport via Blutbahn: chemische Bindung von O₂ und CO₂

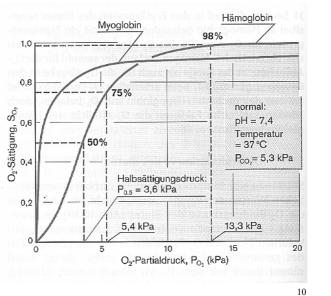
Ursache


zu geringe physikalische Löslichkeit!

Erythrocyt und Atemgastransport

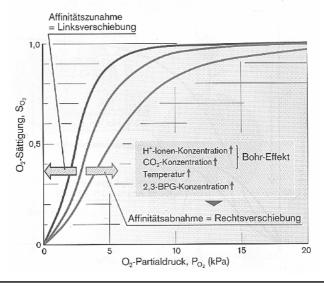
Voraussetzung

Atemgastransport via Blutbahn: chemische Bindung von O2 und CO2, wegen zu geringer Löslichkeit!


9

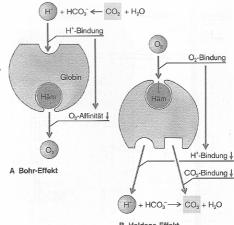
O2-Sättigung im Blut

1 g Hämoglobin bindet maximal 1,34 ml O₂


O₂-Sättigungskurven von

- Hämoglobin
- Myoglobin
- O₂-Sättigung als Funktion von P_{O2}

O₂-Sättigung, P_{O2} und Bohr-Effekt


 P_{CO2} ↑, pH ↓ (Bohr-Effekt), Temperatur ↑, 2,3BPG ↑ (Biphosphoglycerat) ⇒ Affinität von O, zu Fe²⁺ ↓ : Rechtsverschiebung der Sättigungskurve

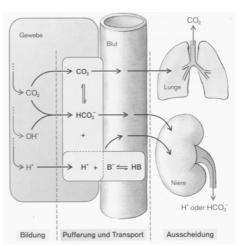
11

Bohr- und Haldane-Effekt

- Bohreffekt ⇒ negativer Einfluss auf Hb-Oxygenisierung durch CO₂fi, pH
- Haldane-Effekt ⇒ negativer Einfluss der chemischen CO₂-Bindung an Hb (Carbamino-Hämoglobin) durch oxigenisiertes Hb
- CO₂-Bindungsformen im Blut:
 - HCO₃-PLasma 50 %
 - HCO₃ -Erythrocyt 27 %
 - CO₂ physikal. gel. 12 %
 - Carbaminohämoglobin 11 %

B Haldane-Effekt

Blutpuffersysteme


- Pufferkapazität: Fähigkeit zur Konstanthaltung des Blut-pH
 ⇒ vorhandene Puffermenge pro Gesamtvolumen und Möglichkeiten seiner
 Zufuhr und Abgabe
- pK bestimmt Pufferwirksamkeit ⇒ Wirkungsoptimum: pH = pK
 - $pH_{Blut} = 7.4$ und $pH_{intrazell} = 6.8$ bis $7.2 \Rightarrow$ erforderlicher pK = 6.0 bis 8.0
- Bikarbonat- und
 Nichtbikarbonat-(Protein- und Phosphat-)Puffer ⇒ größte Pufferkapazität
 - Bicarbonat-Puffer: NaHCO₃
 - geringer Wirkungsgrad weil pK = 6,1
 - hohe Wirksamkeit durch die zur Umgebung offenen Subsysteme Lunge und Niere
 - Lunge (CO₂- Abgabe)
 - Niere (HCO₃--Ausscheidung)

13

Blutpuffersysteme

- Bicarbonat-Puffer: NaHCO₃
 - hohe Wirksamkeit durch offenen Subsysteme Lunge und Niere
 - Lunge
 ⇒ CO₂- Abgabe)
 - Niere
 ⇒ HCO₃ Ausscheidung
- Henderson-Hasselbalch-Gleichung
- \Rightarrow pH = pK x log¹⁰ ([HCO₃-]/[H₂CO₃])
- ⇒ logarithmische Formulierung der Gleichgewichtsreaktion:

$$CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow H^+ + HCO_3^-$$

⇒ pH-Veränderungen ergeben sich aus Quotientveränderung [HCO₃-]/[H₂CO₃] und damit auch aus [HCO₃-]/[CO₂])

Blutpuffersysteme

- Bicarbonat-Puffer: NaHCO₃
 - $\bullet \quad Carboan hydrase_{Erythrocyt}$
 - ⇒ verschiebt die Gleichgewichtsreaktion von

 $CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow H^+ + HCO_3$ nach rechts

- ⇒ wirkt entgegen der geringen Dissoziationsneigung von H₂CO₃ (schwache Säure)
- ⇒stärkerer Anstieg von [HCO₃-]_{Erv}
- ⇒ Diffusion Richtung Plasma
- · Hamburger Shift

 - ⇒ HCO₃-_(Erythrocyt) ⇔ Cl-_{Plasma} Austausch ⇒ begünstigt den HCO₃--Austransport in das Blutplasma
- Protein-Puffer ⇒ sehr unterschiedliche pK-Werte
 - NH-, NH₂- und SH-Gruppen der Proteine sind H⁺-Akzeptoren (Basen)
 - ⇒ besonders bedeutsam: Hämoglobin mit maximalem

Wirkungsbereich bei physiologischem pH

⇒ NH₃-Ausscheidung in der Niere als NH₄⁺ nach entsprechendem Eiweiß-Abbau

 Anorganische und organische Phosphat-Puffer ⇒ pK = 6,8 \Rightarrow H₂PO₄ \Rightarrow H⁺ + HPO₄² u.a. als Puffer in der Niere

15

Erythrocyt und Blutgruppe

Glykolipide der Erythrocytenmembranoberfläche ⇒ antigene Eigenschaften: verursachen in anderen Organismen eine Antikörperbildung

- 15 Blutgruppensysteme, insgesamt mehr als 100 Blutgruppenantigene
- Blutgruppenantigene werden nach den Mendel-Gesetzen vererbt
- ⇒ medizinisch bedeutsam (bei Bluttransfusionen):
- AB0-System:

Antigene A, B, AB oder 0 (antigenetisch stumm)

- natürliches Vorkommen von Antikörpern Anti-A und Anti-B, die sich nach der Geburt entwickeln
 - ⇒ keine immunologische Reaktion auf das jeweilige Blutgruppenantigen
 - · A enthält Anti-B
 - · B enthält Anti-A
 - · AB enthält weder Anti-A noch Anti-B
 - · 0 enthält Anti-A und Anti-B
- **Rhesus-System:**

Antigene C,c, D, d, E, e

- Antigen D am häufigsten ⇒ Rh-positiv bei antigener Eigenschaft D 85% der europäischen Bevölkerung: Rh-positiv

Erythrocytenreaktionen

- Blutgruppenunverträglichkeit ⇒immunologische Erythrocytenreaktion (Antigen- Antikörperreaktion) führt zur Hämolyse (Erythrocytenauflösung)
 - AB0 Unverträglichkeit
 - Rhesus Unverträglichkeit unter der Schwangerschaft
 - Plazenta-Gängigkeit von Anti-D ⇒ Durchtritt in den Säuglingskreislauf ⇒ Antigen-Antikörper-Bildung ⇒ Hämolyse ⇒ M.hämolyticus neonatorum / Eryzhroblastose des Säuglings bei einer folgenden Schwangerschaft
 - Anti-D-Prophylaxe: Injektion von Anti-D zur Bindung des kindlichen Antigen D im Blut der Mutter und Hemmung der mütterlichen Antikörper-D-Produktion
- Blutkörpersenkungsgeschwindigkeit (BKS)
 - Absinken von Eryrthrocyten im stehenden, nicht geronnenen Plasma, da deren spezifisches Gewicht größer ist als das von Plasma
 - BKS-Beschleunigung durch Anlagerung von z.B. Immunglobulinen, die die Erythrocten-Agglomeration f\u00f6rdern
 - ⇒ Entzündungsreaktionen, die mit einer Antikörperbildung einher gehen
 - ⇒Veränderung der Bluteiweißzusammensetzung

12

18

Leukocyten

- entscheidend f
 ür die Abwehrf
 ähigkeit des Organismus gegen
 über inneren und
 äußeren Schadstoffen
 - **Gesamtzahl:** 4000 10000 pro μl Blut
 - **Durchmesser:** 4 -14 μm
 - zellkernhaltig
 - amöboid beweglich: Diapedese / Emigration in den extravasalen Raum
 - mehr als 50% der Leukocyten befinden sich extravasal

	Anzahl/ µl Blut (Normalbereich)	% der Leukozyten	Lebensdauer	Funktionen
Granulozyten	in a side of the			
- Neutrophile	4200 (700-7600)	60%	7 – 14 Stunden	 Phagozytose und Lyse von Parasiten (Viren, Bakterien) Freisetzung von leukotaktisch wirksamen Stoffen (Leukotriene) Bidlung von "Antiblotika" (Lysozym, Laktoferrin, O₂-Radikale)
- Eosinophile	160 (0-400)	2%	1 – 2 Tage	 Abwehr von parasitären Würmern, z. B. Fadenwürmern (Nematoden) Synergie mit Mastzellen und basophilen Granulozyten
- Basophile	40 (0-400)	<1%		Freisetzung von Histamin und Heparin Rolle bei der Abwehr von Parasiten und Helminthen Histaminabhängige Allergiesymptome Freisetzung chemotaktischer Lockstoffe für Eosinophile
Monozyten	400 (70 – 900)	6%	5–7 Tage	 Vorläuferzellen des mononukleären Phagozyten- systems; zu diesem gehören z. B. die Kupffer- Zellen in der Leber, die Alveolarmakrophagen, die Langerhans-Zellen der Haut sowie die Mikrogliazellen im Gehirn
Lymphozyten	2200 (1100-3300)	31%	Monate – Jahre	 B- und T-Lymphozyten humorale und zellvermittelte Immunität
Leukozyten	7000 (2800 - 11200)	100%		

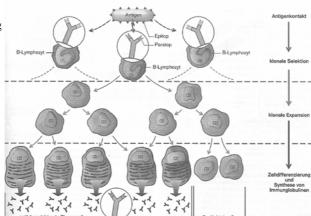
Unspezifische Abwehr

- · Phagocytose und Lyse von
 - körpereigenen, geschädigten Zellen
 - eingedrungene Mikroorganismen
 - opsonierten (markierte)Antigenen
 - mit Komplement beladen oder
 - · Antigen-Antikörper-Komplexen

durch

- Mikrophagen: Granulocyten
- Makrophagen: Monocyten, Histiocyten
- · Chemotaxis als Voraussetzung
 - ⇒ zielgerichtete Bewegung entlang eines Konzentrationsgefälles von chemischen Substanzen aus verletzten Blutgefäßen wie
 - Prostaglandine
 - Leukotrien
 - Komplementproteine
 - Thrompocyten-Proteine

19


Phagocytose und Lyse durch neutrophile Granulocyten (Mikrophqagen) oder Monocyten/Histiocyten (Makrophagen) in 5 Phasen Lysesom Antigen Antigen Antiger Antiger Fremdkorper-Komplex Phase 1: Fremdkorper-kennung Phase 5: Exceptose der Reste, Rezerkulation der Rezeptoren Phase 6: Phase 6: Phase 6: Phase 6: Phase 6: Phase 3: Phagosomen and Lyse des Antigens

Spezifische Abwehr

Voraussetzung ⇒ hochspezifisches Unterscheidungsvermögen des lymphatischen Systems: Milz, Lymphknoten, bronchus- und darmassoziiertes Lymphgewebe von körpereigen und -fremd durch immunologisches Gedächtnis

- spezifische (immunologische) Abwehrreaktion

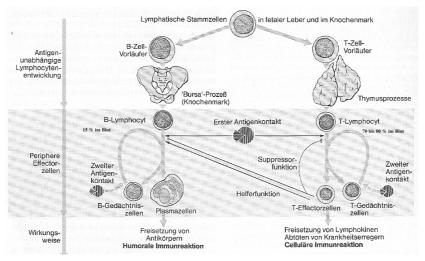
 ⇒ Bildung spezifischer zellulärer und humeraler Antikörper und AntigenAntikörperreaktion
- ⇒ Ersterkennung
 (klonale
 Selektion)
 durch
 B-Zellen, mit
 einem
 passenden
 Rezeptor
- ⇒ klonale Expansion

21

Lymphatisches System

- spezifische Abwehr -

- B-Lymphocyten 15 %
 - B-Gedächtniszelle (langlebig)
 - B-Effektorzelle
 ⇒ Plasmazellen (im Gewebe) ⇒ humorale Antikörper zur humoralen spezifischen Abwehr
- T-Lymphocyten 70 -80 %
 - T- Gedächtniszelle (sehr langlebig)
 - T-Effektorzelle, zellständige Antikörper zur zellulär spezifischen Abwehr,


zu unterteilen in:

- T-Helferzelle (T4)
 - ⇒ zur Eigenaktivierung und Aktivierung der B-Lymphocyten über Signalstoffe:
 - Cytokine ⇒ Interleukin, Interferon
- T-Killerzelle (T8) ⇒ cytotoxisch, zerstört fremde Zellen

Lymphatisches System

- spezifische Abwehr -

- B-Lymphocyten 15 %
- T-Lymphocyten 70 -80 %

23

Sportliche Belastung und immunologischeReaktion

Moderates Training: aerob (2 - 3 mmol / 1 Blutlaktat)

- · Aktivierung der Leukocyten beim Training: induziert durch Adrenalin, Cortisol
 - Granulocyten ↑
 - Monocyten ↑
 - Lymphocyten ↑
- · nach dem Training: Normwerte

anaerobe Trainingsbelastung: Einfluß auf das lymphocytäre System stärker:

- Lymphocyten ↓
- · Gegenregulation nach 2 h
- Normwert nach 24 h

"open window"-Effekt:

kurzeitige Abnahme der Infektresistenz unmittelbar nach extremer Belastung

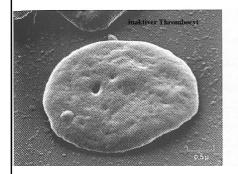
erhöhte Expression der Schleimhäute und des Myokards
 ⇒ Mikroorganismus-Wirtszellenkontakt wird erleichtert

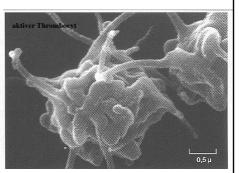
ultralange Belastungen

Leukocyten ↑ ↑

neutrophile Granulocyten ↑↑

Monocyten ↑ ↑


Lymphocyten ↓ (T4- und T8-Zellen)


Blutstillung und Blutgerinnung

Primäre Hämostase: Blutungszeit ⇒1 -3 min

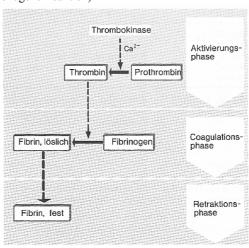
- Thrombocytensystem
 - Vasokonstriktion
 - Thrombocytenadhäsion
 - Thrombocytenaggregation

reversibel oder irreversibel

24

Blutgerinnung

Sekundäre Hämostase: Gerinnungszeit


- in Minuten (im Plasma endogene Reaktion)
- in Sekunden (im Gewebe exogene Reaktion)

Morawitz 1905:

Aktivierung von

- **Prothrombin** und
- Fibrinogen

als Schüsselreaktion der Fibrinpfropfbildung

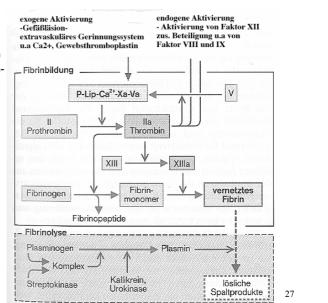
Blutgerinnung und Fibrinolyse

exogene und endogene Reaktionskaskade

Hemmung

- Heparin
- Marcumar (Vitamin K-Antagonist)

der exogenen Prothrombinaktivierung


Fibrinolyse

• endogen und exogen wichtigster **Aktivator** von **Plasminogen**: **Faktor XIIa**

Bluterkrankheit

rezessiv, geschlechtsgebunden (männlich) vererbt

- **Hämophilie A**: Faktor VIII
- Hämophilie B: Faktor IX

